232 research outputs found

    Effects of P300-based BCI use on reported presence in a virtual environment

    Get PDF
    Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence

    High Classification Accuracy of a Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation Training

    Get PDF
    Motor imagery (MI) based brain-computer interfaces (BCI) extract commands in real-time and can be used to control a cursor, a robot or functional electrical stimulation (FES) devices. The control of FES devices is especially interesting for stroke rehabilitation, when a patient can use motor imagery to stimulate specific muscles in real-time. However, damage to motor areas resulting from stroke or other causes might impair control of a motor imagery BCI for rehabilitation. The current work presents a comparative evaluation of the MI-based BCI control accuracy between stroke patients and healthy subjects. Five patients who had a stroke that affected the motor system participated in the current study, and were trained across 10–24 sessions lasting about 1 h each with the recoveriX system. The participants' EEG data were classified while they imagined left or right hand movements, and real-time feedback was provided on a monitor. If the correct imagination was detected, the FES was also activated to move the left or right hand. The grand average mean accuracy was 87.4% for all patients and sessions. All patients were able to achieve at least one session with a maximum accuracy above 96%. Both the mean accuracy and the maximum accuracy were surprisingly high and above results seen with healthy controls in prior studies. Importantly, the study showed that stroke patients can control a MI BCI system with high accuracy relative to healthy persons. This may occur because these patients are highly motivated to participate in a study to improve their motor functions. Participants often reported early in the training of motor improvements and this caused additional motivation. However, it also reflects the efficacy of combining motor imagination, seeing continuous bar feedback, and real hand movement that also activates the tactile and proprioceptive systems. Results also suggested that motor function could improve even if classification accuracy did not, and suggest other new questions to explore in future work. Future studies will also be done with a first-person view 3D avatar to provide improved feedback and thereby increase each patients' sense of engagement

    Complete locked-in and locked-in patients: Command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools

    Get PDF
    Many patients with locked-in syndrome (LIS) or complete locked-in syndrome (CLIS) also need brain-computer interface (BCI) platforms that do not rely on visual stimuli and are easy to use. We investigate command following and communication functions of mindBEAGLE with 9 LIS, 3 CLIS patients and three healthy controls. This tests were done with vibro-tactile stimulation with 2 or 3 stimulators (VT2 and VT3 mode) and with motor imagery (MI) paradigms. In VT2 the stimulators are fixed on the left and right wrist and the participant has the task to count the stimuli on the target hand in order to elicit a P300 response. In VT3 mode an additional stimulator is placed as a distractor on the shoulder and the participant is counting stimuli either on the right or left hand. In motor imagery mode the participant is instructed to imagine left or right hand movement. VT3 and MI also allow the participant to answer yes and no questions. Healthy controls achieved a mean assessment accuracy of 100% in VT2, 93% in VT3, and 73% in MI modes. They were able to communicate with VT3 (86.7%) and MI (83.3%) after 2 training runs. The patients achieved a mean accuracy of 76.6% in VT2, 63.1% in VT3, and 58.2% in MI modes after 1-2 training runs. 9 out of 12 LIS patients could communicate by using the vibro-tactile P300 paradigms (answered on average 8 out of 10 questions correctly) and 3 out of 12 could communicate with the motor imagery paradigm(answered correctly 4,7 out of 5 questions). 2 out of the 3 CLIS patients could use the system to communicate with VT3 (90 and 70% accuracy). The results show that paradigms based on non-visual evoked potentials and motor imagery can be effective for these users. It is also the first study that showed EEG-based BCI communication with CLIS patients and was able to bring 9 out of 12 patients to communicate with higher accuracies than reported before. More importantly this was achieved within less than 15-20 min

    Training in realistic virtual environments: Impact on user performance in a motor imagery-based Brain-Computer-Interface

    Get PDF
    A brain–computer interface (BCI) is a system that enables people to control an external device by means of their brain activity, without the need of performing muscular activity. BCI systems are normally first tested on a controlled environment before being used in a real, daily scenario. While this is due to security reasons, the conditions that BCI systems users will eventually face in their usual environment may affect their performance in an unforeseen way. In this paper, we try to bridge this gap by presenting a trained BCI user a virtual environment that includes realistic distracting stimuli and testing whether the complexity or the type of such stimuli affects user performance. 11 subjects navigated two virtual environments: a static park and the same one with visual and auditory stimuli simulating typical distractors from a real park. No significant differences were found when using a realistic environment; in other words, the presence of different distracting stimuli did not worsen user performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project

    Get PDF
    This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. Results: The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of “ideal types” of disabled users may reinforce stereotypes or drown out participant “voices”. Conclusions: Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a “duty of care” while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10–2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations

    Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns

    Get PDF
    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy— EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user

    Determining kinetic constants for reactions of zinc oxide sorbents with syngas components

    Full text link
    Hot gas clean-up (HGC) technology uses special zinc oxide based sorbents. Sorbent attrition is one of the negative factors that should be improved. The current study has determined that one of the main reasons of sorbent reduction is interaction with syngas components, namely, carbon monoxide, hydrogen, methane and carbon (side reactions). In this study, kinetics of main reaction (h2s adsorption by zinc oxide) and side reactions were considered and compared. Models of chemical processes and mechanisms were considered as well. Complicated nature of HGC process was researched. It is stated that the process can run in three different phases (gas, solid, dust). Methods of TGA data calculation are presented and compared with literature. In syngas where hydrogen sulphide concentration is much lower than concentration of hydrogen and carbon monoxide, main reaction is dominant at temperatures near 300-500 °C. At 650 °C main reaction takes the second place after H2 reduction, and at 850°C it is the third after CO reduction (with diffusion resistance of product shell). Hydrogen reduction is more active than carbon monoxide reduction, that is why CO/H2 ratio in syngas should be increased for rising the HGC operation temperature. A wide range of processes (main and side reactions) was considered with the use of the same materials, equipment and methods. © Published under licence by IOP Publishing Ltd
    corecore